Эксплуатационная производительность как интегральный показатель уровня функционирования и качества продукции
2) техническая;
3) эксплуатационная.
При расчете конструктивной производительности учитывают, главным образом, конструктивные свойства машин: параметры рабочих органов, мощность двигателя, скорости движения рабочих органов самой машины (при этом следует оговорить, что и конструктивные свойства машины учитываются также не полностью – не учитывается удобство конструкции машины для технического ее обслуживания, не учитывается влияние шума и вибрации в кабине на утомляемость рабочего, ее обслуживающего, и т.д.). Условия работы пользователя принимаются постоянными, заложенными в расчетах при ее конструировании. Принимается, что машинист, управляющий машиной имеет высокую квалификацию, не учитываются необходимые технологические и организационные перерывы в работе оборудования. Для многих машин такая производительность носит условный характер, ибо работа машины ведется в холостую (например, для кранового оборудования не берется в учет время ручных операций для прицепки и отцепки груза от крюков). Таким образом, конструктивная производительность характеризует, в основном, конструктивные возможности машины и используется для предварительного сравнения вариантов машин при их проектировании.
При расчете технической производительности оборудования помимо конструктивных ее свойств учитываются условия производства работ и технологические перерывы, а не берутся во внимание лишь организационные перерывы.
Техническая производительность используется для расчета эксплуатационной производительности машины. В отличие от технической этот вид производительности определяется с учетом надежности машин, а также технологических, организационных перерывов в их работе, в том числе простоев оборудования при заправке его топливом; необходимых перерывов в работе при передвижке его, в случае необходимости, по производственному пространству (например, для грузоподъемного оборудования таковым является строительная площадка) и т.д.; смены рабочего оборудования с учетом времени отдыха рабочего, обслуживающего рассматриваемую машину. А также других перерывов в процессе функционирования в пределах определенного календарного отрезка времени, предусмотренных проектом производства работ или соответствующими нормами, правилами, инструкциями и техническими условиями. В одной из работ Д.С. Львова [17] высказывается идея, что способность оборудования выполнять свои функции и, тем самым, удовлетворять потребности потребителя легко измерить «с помощью такого комплексного показателя качества, как выработка» (то есть эксплуатационная производительность). С этой точкой зрения можно согласиться, добавив, что эксплуатационная производительность характеризует способность техники выполнять свои функции, но не в определенных (эталонных) условиях, а в фактических (то есть в любых) условиях эксплуатации, причем влияние таких фактических условий должно характеризоваться показателем качества использования (эксплуатации) оборудования.
Таким образом, можно сделать вывод, что эксплуатационная производительность является комплексным показателем функционирования оборудования [107]:
, (2.1)
где Qэкс. – эксплуатационная производительность;
QТ – техническая производительность;
NТ – коэффициент использования календарного времени.
Величина коэффициента использования календарного времени (NТ) зависит от продолжительности плановых ремонтов, технического обслуживания; характера, частоты возникновения отказов оборудования и оперативности их устранения; наличия вспомогательных операций в смене; транспортной системы; числа передвижек транспортных коммуникаций, холостых переходов и т.д. [134]. Все факторы, влияющие на рассматриваемый коэффициент, можно сгруппировать в три основные вида.