Анализ данных и подготовка заключительного отчета
Анализ данных начинается с перевода «сырых» данных в осмысленную информацию и включает их введение в компьютер, проверку на предмет ошибок, кодирование, представление в матричной форме (табулирование). Обычно закодированные исходные данные представляются в виде матрицы, столбцы которой содержат ответы на различные вопросы анкеты, а ряды — респондентов или изучаемые ситуации. Все это называется преобразованием исходных данных.
Далее проводится статистический анализ, т.е. определяются средние величины, частоты, корреляционные и регрессионные соотношения, осуществляется анализ трендов.
Выделяют пять основных видов статистического анализа, используемых при проведении маркетинговых исследований: дескриптивный анализ, выводной анализ, анализ различий, анализ связей и предсказательный анализ. Иногда эти виды анализа используются по отдельности, иногда — совместно.
В основе дескриптивного анализа лежит использование двух групп статистических мер. Первая — включает меры «центральной тенденции», или меры, которые описывают типичного респондента или типичный ответ (средняя величина, мода, медиана). Вторая — включает меры вариации, или меры, описывающие степень схожести или несхожести респондентов или ответов с «типичными» респондентами или ответами (распределение частот, размах вариации и среднее квадратическое отклонение).
Существуют и другие описательные меры, например, меры асимметрии (насколько найденные кривые распределения отличаются от нормальных кривых распределения). Однако они используются не столь часто, как вышеупомянутые, и не представляют особого интереса для заказчика.
Анализ, в основе которого лежит использование статистических процедур (например, проверка гипотез) с целью обобщения полученных результатов на всю совокупность, называется выводным анализом.
Вывод является видом логического анализа, направленного на получение общих заключений о всей совокупности на основе наблюдений за малой группой единиц данной совокупности.
Выводы делаются на основе анализа малого числа фактов. Например, если два ваших товарища, имеющие одну и ту же марку автомобиля, жалуются на его качество, то вы можете сделать вывод о низком качестве данной марки автомобиля в целом.
Статистический же вывод основан на статистическом анализе результатов выборочных исследований и направлен на оценку параметров совокупности в целом. В данном случае результаты выборочных исследований являются только отправной точкой для получения общих выводов.
Например, автомобилестроительная компания провела два независимых исследования с целью определения степени удовлетворенности потребителей своими автомобилями. Первая выборка включала 100 потребителей, купивших данную модель в течение последних шести месяцев. Вторая выборка включала 1000 потребителей. В ходе телефонного интервьюирования респонденты отвечали на вопрос: «Удовлетворены вы или не удовлетворены купленной вами моделью автомобиля?» Первый опрос выявил 30% неудовлетворенных, второй — 35%.
Поскольку существуют ошибки выборки и в первом и во втором случаях, то можно сделать следующий вывод. Для первого случая: около 30% опрошенных выразили неудовлетворенность купленной моделью автомобиля. Для второго случая: около 35% опрошенных выразили неудовлетворенность купленной моделью автомобиля. Какой же общий вывод можно сделать в данном случае? Как избавиться от термина «около»? Используя логический анализ, можно сделать вывод, что большая выборка содержит меньшую ошибку и что на ее основе можно сделать более правильные выводы о мнении всей совокупности потребителей. Видно, что решающим фактором для получения правильных выводов является размер выборки. Данный показатель присутствует во всех формулах, определяющих содержание различных методов статистического вывода.